The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 X X 1 X 1 1 1 X 1 1 1 X 1 1 1 1 1 0 3 0 0 0 0 0 0 0 0 0 0 0 3 3 6 6 6 3 6 3 3 3 6 6 0 6 0 0 3 6 3 6 6 3 3 3 3 6 6 6 3 6 6 0 6 6 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 3 6 3 0 3 6 6 6 0 0 3 3 6 3 3 6 3 3 0 6 3 6 6 0 0 3 6 6 3 0 3 0 6 0 0 0 3 0 0 0 0 0 3 0 0 0 0 3 6 6 6 6 6 3 0 3 6 0 0 0 6 6 3 0 6 3 0 6 6 0 3 6 0 0 3 6 6 0 3 0 3 0 0 6 6 3 6 3 0 0 0 0 0 0 3 0 0 3 6 0 6 6 3 3 3 6 3 3 0 6 3 6 6 6 3 0 6 3 3 0 0 6 0 6 3 6 3 0 3 3 3 0 0 3 3 6 6 6 6 3 0 0 0 0 0 0 3 0 6 6 3 0 6 6 3 6 6 3 6 6 3 6 3 6 6 0 3 3 6 0 6 6 6 0 0 3 6 0 0 6 6 6 6 6 3 3 3 3 6 6 6 0 0 0 0 0 0 0 3 6 6 6 6 3 0 3 3 0 0 3 6 3 3 3 3 0 6 6 0 3 6 0 3 0 6 3 3 3 3 0 6 3 0 0 0 0 0 6 3 3 3 3 0 generates a code of length 51 over Z9[X]/(X^2+6,3X) who´s minimum homogenous weight is 84. Homogenous weight enumerator: w(x)=1x^0+38x^84+138x^87+192x^90+300x^93+648x^96+1134x^99+14680x^102+1448x^105+560x^108+138x^111+170x^114+116x^117+68x^120+26x^123+20x^126+4x^129+2x^135 The gray image is a code over GF(3) with n=459, k=9 and d=252. This code was found by Heurico 1.16 in 2.37 seconds.